	10 Pho)0 po nes m	MATH (CHAPT) ints Sprin YOU MUST SHOW YOUR WO nust be OFF and put away. No graphir	l0 - TEST 1 ER 1 and 2) g 2012 DRK. PRESENTAT g calculators allo	NAME: ION COUNTS! wed. No scratch paper allowed.
	CIRCLE	E T FC	DR TRUE, F FOR FALSE.		(3 points each)
Т	F	(1)	For any nxn matrices A, B, and C, if A	B = AC, then $B =$	С.
т	F	(2)	If A and B are invertible nxn matrices	, then AB is invert	ible, $and(AB)^{-1} = B^{-1} A^{-1}$.
Т	F	(3)	$-3R_1 + R_2 \rightarrow R_1$ is an elementary row of	operation	
Т	F	(4)	The associative law for multiplication	holds true for ma	atrix multiplication.
Т	F	(5)	If A and B are square matrices such	that AB = 0 and B	is invertible, then $A = 0$.
Т	F	(6)	If A is invertible then the system A λ	x = 0 has infinitely	many solutions.
Т	F	(7)	If A is row equivalent to B and A is ir	vertible then B is	invertible.
Т	F	(8)	If AB=I then B is the inverse of A.		
			SHOW ALL WORK NEATLY AND P	UT <u>BOX</u> AROUNI	D ALL ANSWERS.

	3	-1	2	0
(9) Compute	-2	-3	1	3
(3) compute	0	-1	4	1
	5	0	-2	3

(10) Given the matrices:

	0	0	-3		$\begin{bmatrix} 2 & 4 & 3 \end{bmatrix}$	
A =	1	3	3	B =	1 3 3	
	1	2	3		1 2 3	
wing Vou may use properties from class						

a) Compute each of the following. You may use properties from class to shorten your work, but make it clear what you are doing.

i) the second row of AB.	(4 points)
ii) B^{-1}	(10 points)
iii) $\left(B^T\right)^{-1}$	(3 points)
(1, 1)	

iv)
$$det(A^{-1})$$
 (3 points)
A in the form A = EB, where E is an elementary matrix. (6 points)

b) Express A in the form A = EB, where E is an elementary matrix.

(11) Use <u>matrix methods (Gaussian elimination or Gauss Jordan)</u> to solve: (10 points) 2x + y + z = 16

-x - 2y - z = -3x + y + 2z = 9

You must obtain row (or reduced row) echelon form. Be sure to label operations performed at each step.

⁽¹²⁾ Given an nxn matrix A, we have found 7 equivalent statements in "the big theorem". Name four of them.

(13) If A is a symmetric nxn matrix and B is any nxm matrix, prove that B^TAB is an mxm symmetric matrix., (6 points)

(14) Prove: The matrix $A = \begin{bmatrix} 1 & a & b \\ -a & 1 & c \\ -b & -c & 1 \end{bmatrix}$ is invertible. (6 points)

(15) Determine	(15) Determine all values of B and C for which the system		
x - y + z	x - y + z = 2		
x + y - z	x + y - z = C		
2x - y +	2x - y + Bz = -1		
has	a) a unique solution b) infinitely many solutions		

c) no solution

(12 points)