```
MATH 10- TEST 1
(CHAPTER 1 and 2)
    Spring }201
NAME:
``` \(\qquad\)
```

YOU MUST SHOW YOUR WORK. PRESENTATION COUNTS!

```
100 points

Phones must be OFF and put away. No graphing calculators allowed. No scratch paper allowed.

CIRCLE T FOR TRUE, F FOR FALSE.
(3 points each)
T \(\quad\) (1) For any \(n x\) matrices \(A, B\), and \(C\), if \(A B=A C\), then \(B=C\).
\(T \quad F \quad\) (2) If \(A\) and \(B\) are invertible \(n x n\) matrices, then \(A B\) is invertible, and \((A B)^{-1}=B^{-1} A^{-1}\).
T F (3) \(-3 R_{1}+R_{2} \rightarrow R_{1}\) is an elementary row operation..

T F (4) The associative law for multiplication holds true for matrix multiplication.
T F (5) If \(A\) and \(B\) are square matrices such that \(A B=0\) and \(B\) is invertible, then \(A=0\).
T F (6) If \(A\) is invertible then the system \(A X=0\) has infinitely many solutions.

T \(\quad F \quad\) (7) If \(A\) is row equivalent to \(B\) and \(A\) is invertible then \(B\) is invertible.
T \(F\) (8) If \(A B=I\) then \(B\) is the inverse of \(A\).
SHOW ALL WORK NEATLY AND PUT BOX AROUND ALL ANSWERS.
(9) Compute \(\left|\begin{array}{cccc}3 & -1 & 2 & 0 \\ -2 & -3 & 1 & 3 \\ 0 & -1 & 4 & 1 \\ 5 & 0 & -2 & 3\end{array}\right|\).
(10) Given the matrices: \(\quad \mathrm{A}=\left[\begin{array}{ccc}0 & 0 & -3 \\ 1 & 3 & 3 \\ 1 & 2 & 3\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{lll}2 & 4 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 3\end{array}\right]\)
a) Compute each of the following. You may use properties from class to shorten your work, but make it clear what you are doing..
i) the second row of \(A B\). (4 points)
ii) \(B^{-1}\) (10 points)
iii) \(\left(B^{T}\right)^{-1}\)
(3 points)
iv) \(\operatorname{det}\left(A^{-1}\right)\)
(3 points)
b) Express \(A\) in the form \(A=E B\), where \(E\) is an elementary matrix.
(6 points)
(11) Use matrix methods (Gaussian elimination or Gauss Jordan) to solve: (10 points) \(2 x+y+z=16\)
\(-x-2 y-z=-3\)
\(x+y+2 z=9\)
You must obtain row (or reduced row) echelon form. Be sure to label operations performed at each step.
(12) Given an nxn matrix A, we have found 7 equivalent statements in "the big theorem". Name four of them.
(8 points)
(13) If \(A\) is a symmetric \(n x n\) matrix and \(B\) is any \(n x m\) matrix, prove that \(B^{\top} A B\) is an \(m x m\) symmetric matrix.,
(6 points)
(14) Prove: The matrix \(A=\left[\begin{array}{ccc}1 & a & b \\ -a & 1 & c \\ -b & -c & 1\end{array}\right]\) is invertible.
(6 points)
(15) Determine all values of \(B\) and \(C\) for which the system
\(2 x-y+B z=-1\)
has a) a unique solution
b) infinitely many solutions \(\qquad\)
c) no solution```

