Examples: Nullspace, Row Space \& Column Space

Example 1: Given the 3×4 matrix $A=\left[\begin{array}{cccc}1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2\end{array}\right]$ Find:
a) The solution(s) to the system $A \vec{x}=\overrightarrow{0}$
b) A basis for the nullspace of A, and its dimension.
c) A basis for the row space of A, and its dimension.
d) A basis for the column space of A, and its dimension.

Solution:
a) The solution(s) to the system $A \vec{x}=\overrightarrow{0}$

The augmented matrix for the system, $\left[\begin{array}{ccccc}1 & 4 & 5 & 2 & 0 \\ 2 & 1 & 3 & 0 & 0 \\ -1 & 3 & 2 & 2 & 0\end{array}\right]$ can be row reduced to
$\left[\begin{array}{lllll}1 & 4 & 5 & 2 & 0 \\ 0 & 1 & 1 & \frac{4}{7} & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ which yields the solution $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-s-\frac{2}{7} t \\ -s-\frac{4}{7} t \\ s \\ t\end{array}\right]=s\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-\frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1\end{array}\right]$.
Notice there are two parameters, $s \& t . \quad x_{3}$ and x_{4} are called free variables, x_{1} and x_{2} are called leading variables. So in this example there are two free variables and two leading variables.
b) A basis for the nullspace of A, and its dimension.

Using part (a), a basis for the nullspace of A is $\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}-\frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1\end{array}\right]$.
Since there are two vectors in this basis, the dimension of the nullspace of A is 2 . This is called the nullity. Nullity $(A)=2$.
c) A basis for the row space of A, and its dimension.

Row reducing $\ldots\left[\begin{array}{cccc}1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{cccc}1 & 4 & 5 & 2 \\ 0 & 1 & 1 & \frac{4}{7} \\ 0 & 0 & 0 & 0\end{array}\right]$. So a basis is $\left[\begin{array}{cccc}1 & 4 & 5 & 2\end{array}\right]$ and the dimension of the row space of A is 2 .
d) A basis for the column space of A, and its dimension.

Two ways you can do this.

1) Using the row echelon form of A in part (c) we can see that the first two columns form a basis for the column space of that matrix, thus the first two columns of A form a basis for the column space of A. So a basis is $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]$ and the dimension of the column space of A is 2
2) Since the column space of $A=$ the row space of A^{\top} we can find a basis for the row space of A^{\top}

$$
\left.A^{T}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
4 & 1 & 3 \\
5 & 3 & 2 \\
2 & 0 & 2
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \text { Now since } \begin{array}{lll}
1 & 2 & -1
\end{array}\right] \text { is a basis for }
$$

the row space of $A^{\top} \quad\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ is a basis for the column space of A.

Example 2: Given the 2X2 matrix $\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$ Find:
a) The solution(s) to the system $A \vec{x}=\overrightarrow{0}$
b) A basis for the nullspace of A , and its dimension.
c) A basis for the row space of A, and its dimension.
d) A basis for the column space of A, and its dimension.

Solution:
a) The solution(s) to the system $A \vec{x}=\overrightarrow{0}$

The augmented matrix for the system, $\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 5 & 0\end{array}\right]$ can be row reduced to $\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 1 & 0\end{array}\right]$ which yields the solution $\vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. We should have expected this since the $\operatorname{det}(A) \neq 0$, so A is invertible and $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
b) A basis for the nullspace of A , and its dimension.

Using part (a), the nullspace is just the zero space so there is no basis and the dimension is zero. $\operatorname{Nullity}(\mathrm{A})=0$.
c) A basis for the row space of A, and its dimension.

Row reducing... $\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right] \rightarrow \rightarrow \rightarrow\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. So a basis is $\left[\begin{array}{ll}1 & 3\end{array}\right]$ and the dimension of the row space of A is 2. Notice, in this case, since it is easy to see that the rows of A are two linearly independent vectors, the row space is R^{2} so any two linearly independent vectors will form a basis.
d) A basis for the column space of A, and its dimension.

Using the row echelon form of A in part (c) we can see that the two columns form a basis for the column space of that matrix, thus the two columns of A form a basis for the column space of A . So a basis is $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 5\end{array}\right]$ and the dimension of the column space of A is 2

Example 3:
(a) Find a basis for the row space of $A=\left[\begin{array}{cccc}1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2\end{array}\right]$ that consists entirely of row vectors of A.
(b) Find a subset of the vectors $\mathbf{v}_{1}=(1,4,5,2), \mathbf{v}_{2}=(2,1,3,0), \mathbf{v}_{3}=(-1,3,2,2)$ that forms a basis for the space spanned by these three vectors.
(c) Express each vector not in the basis as a linear combination of the basis vectors.

Solution:
(a) Since row space of $A=$ the column space of A^{\top}, we'll find the column space of A using the first method in example 1d.

$$
A^{T}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
4 & 1 & 3 \\
5 & 3 & 2 \\
2 & 0 & 2
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Using the row echelon form of A^{\top} we can see that the first two columns form a basis for the column space of that matrix, thus the first two columns of A^{\top} form a basis for the column space of A^{\top}. Thus $\left.\begin{array}{llll}{[1} & 4 & 5 & 2\end{array}\right]$ form a basis for the row space of A.
(b) This is the same problem, other than notation. So $\mathbf{v}_{1}=(1,4,5,2) \& \mathbf{v}_{2}=(2,1,3,0)$ form a basis for the space spanned by the three given vectors.
(c) Since $\mathbf{v}_{1} \& \mathbf{v}_{2}$ form a basis for the space spanned by the three given vectors, \mathbf{v}_{3} can be written as a linear combination of $\mathbf{v}_{1} \& \mathbf{v}_{2}$. This combination is most easily found by continuing the row operations from part (a) to obtain reduced row echelon form.

$$
A^{T}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
4 & 1 & 3 \\
5 & 3 & 2 \\
2 & 0 & 2
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

From here we can see that the third column is one times the first column - one times the second which holds true in A^{\top} as well. Since the columns of A^{\top} are precisely the given vectors, we have $\mathbf{v}_{3}=\mathbf{v}_{1}-\mathbf{v}_{2}$

