1 4 5 2 **Example 1**: Given the 3X4 matrix $A = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$ Find:

- a) The solution(s) to the system $A\vec{x} = \vec{0}$
- b) A basis for the nullspace of A, and its dimension.
- c) A basis for the row space of A, and its dimension.
- d) A basis for the column space of A, and its dimension.

Solution:

a) The solution(s) to the system $A\vec{x} = \vec{0}$

The augmented matrix for the system, $\begin{bmatrix} 1 & 4 & 5 & 2 & 0 \\ 2 & 1 & 3 & 0 & 0 \\ -1 & 3 & 2 & 2 & 0 \end{bmatrix}$ can be row reduced to

$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	4 1 0	5 1 0	$2 \frac{4}{7} 0$	$\begin{bmatrix} 0\\0\\0\end{bmatrix}$	which yields the solution	$\vec{x} =$	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$	=	$\begin{bmatrix} -s - \frac{2}{7}t \\ -s - \frac{4}{7}t \\ s \\ t \end{bmatrix}$	= s	-1 -1 1 0	+ <i>t</i>	$\begin{bmatrix} -\frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1 \end{bmatrix}$	-
---	-------------	-------------	-------------------	--	---------------------------	-------------	--	---	--	-----	--------------------	------------	--	---

Notice there are two parameters, s & t. x_3 and x_4 are called free variables, x_1 and x_2 are called leading variables. So in this example there are two free variables and two leading variables.

b) A basis for the nullspace of A, and its dimension. $\begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$

Using part (a), a basis for the nullspace of A is

Since there are two vectors in this basis, the dimension of the nullspace of A is 2. This is called the nullity. Nullity(A)=2.

c) A basis for the row space of A, and its dimension.

Row reducing	[1	4	5	2		[1	4	5	2]	[1	4	5	2]
Row reducing	2	1	3	0	$\rightarrow \dots \rightarrow$	0	1	1	4	. So a basis is -	т	5	² and the
		2	2	2			0	0	7	0	1	1	$\frac{4}{7}$
	[-1	3	2	2		Įυ	0	0	0]	L			, 1
dimension of the row space of A is 2.													

- d) A basis for the column space of A, and its dimension. Two ways you can do this.
 - 1) Using the row echelon form of A in part (c) we can see that the first two columns form a basis for the column space of that matrix, thus the first two

columns of A form a basis for the column space of A. So a basis is 2 1

and the dimension of the column space of A is 2

2) Since the column space of A = the row space of A^{T} we can find a basis for the row space of A^T.

$$A^{T} = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 1 & 3 \\ 5 & 3 & 2 \\ 2 & 0 & 2 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
 Now since $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix}$ is a basis for the row space of A^{T} $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ is a basis for the column space of A.

Example 2: Given the 2X2 matrix A = $\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$ Find:

- a) The solution(s) to the system $A\vec{x} = 0$
- b) A basis for the nullspace of A, and its dimension.
- c) A basis for the row space of A, and its dimension.
- d) A basis for the column space of A, and its dimension.

Solution:

a) The solution(s) to the system $A\vec{x} = 0$

The augmented matrix for the system, $\begin{bmatrix} 1 & 3 & 0 \\ 2 & 5 & 0 \end{bmatrix}$ can be row reduced to $\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ which yields the solution $\vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. We should have expected this since the det(A) \neq 0, so A is invertible and $A\vec{x} = \vec{0}$ has only the trivial solution.

- b) A basis for the nullspace of A, and its dimension. Using part (a), the nullspace is just the zero space so there is no basis and the dimension is zero. Nullity(A)=0.
- c) A basis for the row space of A, and its dimension.

	Row reducing	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	3 5]	$\rightarrow \dots \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 3\\1 \end{bmatrix}$.	So a basis is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	3] and the dimension of the
--	--------------	---------------------------------------	---------	--	--	--	---	----------------------------

row space of A is 2. Notice, in this case, since it is easy to see that the rows of A are two linearly independent vectors, the row space is R² so any two linearly independent vectors will form a basis.

d) A basis for the column space of A, and its dimension. Using the row echelon form of A in part (c) we can see that the two columns form a basis for the column space of that matrix, thus the two columns of A form a basis for the

column space of A. So a basis is $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and the dimension of the column space of A is 2

Example 3:

(a) Find a basis for the row space of A= $\begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$ that consists entirely of row vectors of A.

(b) Find a subset of the vectors \mathbf{v}_1 =(1, 4, 5, 2), \mathbf{v}_2 = (2, 1, 3, 0), \mathbf{v}_3 = (-1, 3, 2, 2) that forms a basis for the space spanned by these three vectors.

(c) Express each vector not in the basis as a linear combination of the basis vectors.

Solution:

(a) Since row space of A = the column space of A^{T} , we'll find the column space of A using the first method in example 1d.

 $A^{T} = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 1 & 3 \\ 5 & 3 & 2 \\ 2 & 0 & 2 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Using the row echelon form of A^{T} we can see that the first two columns form a basis for the column space of *that* matrix, thus the first two columns of A^{T} form a basis for the column space of

 A^{T} . Thus $\begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \end{bmatrix}$ form a basis for the row space of A.

(b) This is the same problem, other than notation. So $v_1 = (1, 4, 5, 2) \& v_2 = (2, 1, 3, 0)$ form a basis for the space spanned by the three given vectors.

(c) Since $\mathbf{v}_1 \& \mathbf{v}_2$ form a basis for the space spanned by the three given vectors, \mathbf{v}_3 can be written as a linear combination of $\mathbf{v}_1 \& \mathbf{v}_2$. This combination is most easily found by continuing the row operations from part (a) to obtain *reduced* row echelon form.

	1	2	-1		1	2	-1		1	0	1]	
A T	4	1	3	→…→	0	1	-1	→…→	0	1	-1	
	5	3	2		0	0	0		0	0	0	
			2				0				0	

From here we can see that the third column is one times the first column – one times the second which holds true in A^T as well. Since the columns of A^T are precisely the given vectors, we have $\mathbf{v}_3 = \mathbf{v}_1 - \mathbf{v}_2$