For the matrices A and b below, find the rank of A and the rank of the augmented matrix $[A \mid b]$
Example 1: $\quad A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & 2 & 0\end{array}\right] \quad \vec{b}=\left[\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right]$
To find the rank of A we will row reduce A and find the number of vectors in a basis of the row space of A.

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { So the } \operatorname{rank}(\mathrm{A})=3
$$

Similarly, if we row reduce the augmented matrix $[\mathrm{A} \mid \mathrm{b}]$

$$
[A: \vec{b}]=\left[\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 0 & 1 & 3 \\
1 & 2 & 0 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right] \text { we find the } \operatorname{rank}[A \mid b]=3
$$

In this example, the system $A \vec{x}=\vec{b}$ has a unique solution.
Example 2: $\quad A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 0 & 1 \\ 3 & 2 & -1\end{array}\right] \quad \vec{b}=\left[\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & 1 \\
3 & 2 & -1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \operatorname{rank}(A)=2 \\
& {[A: \vec{b}]=\left[\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 0 & 1 & 3 \\
3 & 2 & -1 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \operatorname{rank}[A \mid b]=2}
\end{aligned}
$$

The system $A \vec{x}=\vec{b}$ has infinitely many solutions.
Example 3: $\quad A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right] \quad \vec{b}=\left[\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \operatorname{rank}(\mathrm{A})=2 \\
& {[A: \vec{b}]=\left[\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 0 & 1 & 3 \\
2 & 1 & 0 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \Rightarrow \operatorname{rank}[\mathrm{A} \mid \mathrm{b}]=3}
\end{aligned}
$$

The system $A \vec{x}=\vec{b}$ has no solution
Generalizing....
Theorem: Let $A \vec{x}=\vec{b}$ be a system of linear equations in n variables.

1) If $\operatorname{rank}(A)=. \operatorname{rank}[A \mid b]=n$ then the system has a unique solution, (consistent)
2) If $\operatorname{rank}(A)=. \operatorname{rank}[A \mid b]<n$ then the system has infinitely many solutions, (consistent)
3) If $\operatorname{rank}(A)<. \operatorname{rank}[A \mid b]$ then the system has no solution,

So for a given A and b, the system $A \vec{x}=\vec{b}$ is consistent if and only if $\operatorname{rank}(A)=. \operatorname{rank}[A \mid b]$

