SHOW ALL WORK NEATLY AND CLEARLY BOX ALL ANSWERS.
FILL IN THE BLANK WITH THE MOST APPROPRIATE ANSWER. NO PARTIAL CREDIT.
(1) TRUE OR FALSE: If $\lim _{k \rightarrow \infty} a_{k}=0$ then $\sum_{k=1}^{\infty} a_{k}$ converges.
(2) $\int \cos ^{2} x d x=$ \qquad
(3) $\cosh (\ln 3)=$ \qquad (exactly)
(4) Express the point $(-\sqrt{3}, 1)$ in polar coordinates(exactly) \qquad
(5) Express the polar point $(8,7 \pi / 6)$ in rectangular coordinates (exactly) \qquad
(6) The derivative of $f(x)=e^{1-3 x}$ is \qquad
(7) $6-2+2 / 3-2 / 9+\ldots . .=$ \qquad
(8) $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x^{2}}=$ \qquad -.
(9) $\int \frac{1}{1-x} d x=$ \qquad
(10) True or False: $1-\frac{1}{\sqrt[4]{2}}+\frac{1}{\sqrt[4]{3}}-\frac{1}{\sqrt[4]{4}}+\ldots$ is a conditionally convergent series. \qquad
(11) For each of the following series, classify as convergent (absolute or conditional if applicable) or divergent. SHOW ALL DETAILS.
(a) $\frac{1}{e}+\frac{2}{e^{4}}+\frac{3}{e^{9}}+\frac{4}{e^{16}}+\ldots .$.
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2 n}{4 n^{2}-3}$
(12) Sketch the graphs of the polar curves: $r=3 \sin \theta$. and $r=1+\sin \theta$.

(13) Find each of the following limits. Show details or no credit will be given:
(a) $\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)$
(b) $\lim _{x \rightarrow \infty}(x \tan (1 / x))$
(14) If $f(x)=2+e^{-x}$, find $f^{-1}(x)$.
(15) Determine the interval of convergence: SHOW DETAILS.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{3^{n}(n+1)}
$$

(16) Compute each of the following integrals. For any given improper integrals, you must first write the integral in terms of the limit as it is defined.
(a) $\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x$ (b)
(8) $\int \frac{d x}{x^{2} \sqrt{x^{2}-25}}$
(c) $\int_{0}^{\infty} \frac{e^{-x}}{1+e^{-2 x}} d x$
(d) $\int \cos ^{3} x d x$
(a) Sketch the curve given by the parametric equations $\left\{\begin{array}{l}x=t^{3} \\ y=t^{2}\end{array}\right.$
(b) Find the length of the portion of the above curve corresponding to $0=t=2$

(18) Given $f(x)=X e^{x}$, answer the following, find any other information necessary to obtain a graph and sketch the graph.
(a) $\lim _{x \rightarrow \infty} f(x)=$ \qquad
(b) $\lim _{x \rightarrow-\infty} f(x)=$ \qquad
(c) local extrema \qquad
(d) Discuss concavity

(19) (a) Use series to approximate $\int_{0}^{1 / 2} \frac{1}{\sqrt{1+x^{2}}} d x$ correct to 2 decimal places.
(b) Find the value of the integral exactly by integrating directly.

