MATH 5B - TEST 2 Sample

(Chapter 7)

100 POINTS

 $$\rm NAME:$ _____ Find the value of the following improper integrals. Be sure to use all appropriate notation.

(1)
$$\int_0^4 \frac{1}{(x-2)^3} dx$$

(2)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x} (x+4)} dx$$

- (3) (a) Use Simpson's Rule with n=10 to approximate the area under the curve $y = e^{-x^2}$, $0 \le x \le 1$. * Use your calculator efficiently to prevent round-off error.
 - (b) Estimate the error involved in the above approximation.
 - (c) If you want to guarantee that the Simpson's Rule approximation is accurate to within 0.00001, how large must n be?.

*** This section will not be on your test#2. Disregard problem

FOR PROBLEMS 5 - 13, INTEGRATE AND SIMPLIFY

(5) $\int \sin^{3/2} x \cos^3 x \, dx$

(6)
$$\int \frac{4x+1}{2x^2+x-10} dx$$

(7) $\int \sqrt{x} \ln x dx$

$$(8) \quad \int \frac{1}{1 + \sqrt[3]{x}} dx$$

$$(9) \quad \int \frac{dx}{x^2 \sqrt{x^2 - 16}}$$

(10) $\int x^2 \cos(3x) \, dx$

$$(11) \quad \int \frac{x}{\sqrt{3-2x-x^2}} \, dx$$

(12)
$$\int \frac{5x^3 - 3x^2 + 7x - 3}{(x^2 + 1)^2} dx$$

(13) The region under the curve $y = \cos^2 x$, $0 \le x \le \frac{\pi}{2}$, is rotated about the y axis. Find the volume of the

resulting solid.