${ }^{* *}$ No credit given unless detailed work is shown. Non-graphing calculators are allowed.**
FILL IN THE BLANK WITH THE MOST APPROPRIATE WORD OR SYMBOL. (2 points each)
(1) The fourth partial sum, S_{4}, of the series $\sum_{n=1}^{\infty} n$! is \qquad
(2) Find the general term of the sequence $-\frac{3}{4}, \frac{5}{8},-\frac{7}{16}, \frac{9}{32}, \ldots$ \qquad
(3) Determine whether the sequence converges or diverges: $\left\{\frac{2 n}{5 n+1}\right\}$ \qquad
(5) TRUE OR FALSE: If $\sum_{k=1}^{\infty} a_{k}$ diverges then $\lim _{k \rightarrow \infty} a_{k} \neq 0$.
(5) TRUE OR FALSE: If $0 \leq a_{n} \leq b_{n}$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges
(6) The following series satisfies the conditions of the Alternating Series Test. How many terms would need to be added to approximate the sum of the series with an error less than 10^{-2} in magnitude?
(7 points)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3 / 2}}
$$

In problems $7 \& 8$, find the (exact) sum. Show steps in detail. (9 points each)
(7) $\quad \sum_{n=1}^{\infty} \frac{2}{n(n+2)}$
(8) $\sum_{n=0}^{\infty} \frac{(-3)^{n+1}}{4^{n}}$
(9) For each of the following series, determine the convergence. (Classify as absolute or conditional if applicable) If convergence is conditional, show how absolute convergence was ruled out. Name any test(s) used and verify test applies to given series.
(9 points each)
(a) $\sum_{n=1}^{\infty} \frac{2 n^{3}+5 n^{2}}{n^{4}-3 n^{3}+2}$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+1}}{2 n}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(5 n)^{n}}{n^{3 n}}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n+1)}$
(e) $\sum_{n=1}^{\infty} \frac{2^{n}}{(2 n)!}$
(10) Given the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(a) Show that the given series satisfies the conditions of the integral test.
(b) Use the integral test to show that the series converges.
(c) Approximate the sum of the series by using the sum of the first 10 terms.
(d) Estimate the error involved in the above approximation.
(e) Determine how many terms would need to be added to obtain error <0.005.
(f) Use $s_{n}+\int_{n+1}^{\infty} f(x) d x \leq S \leq s_{n}+\int_{n}^{\infty} f(x) d x$ with $n=10$ to obtain a better estimate of the sum of the series.
(g) Estimate the error in using the approximation to S from part (f).

