(1) Given the following matrices: (20 points)

$$
A=\left[\begin{array}{cc}
6 & 1 \\
3 & -2
\end{array}\right] \quad B=\left[\begin{array}{lll}
0 & -1 & \frac{1}{2} \\
3 & -4 & 3 \\
1 & -2 & 3
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & -7 \\
2 & -5
\end{array}\right] \quad D=\left[\begin{array}{ccc}
-4 & 0 & -2 \\
3 & 1 & -7
\end{array}\right] \quad E=\left[\begin{array}{cccc}
-1 & -2 & 0 & 4 \\
4 & -1 & 3 & 0 \\
7 & 2 & -1 & 1 \\
2 & 1 & 0 & 0
\end{array}\right] \text { Find the }
$$

following, if possible. (If not possible, say so.)
(a) DA
(b) $A+C$
(c) A C
(d) DB
(g) B^{-1}
(answer here, work on next page)
(h) $\operatorname{det}(E)$
(answer here, work on next page)
(2) Use Cramer's Rule to solve the following system. $\left\{\begin{array}{l}\frac{1}{3} x-2 y=6 \\ \frac{2}{5} x-y=3\end{array}\right.$
(10 points)
(3) Express the system of linear equations as a matrix equation of the form $A X=B$. Then solve the matrix equation by multiplying each side by the inverse of the coefficient matrix.
(14 points)
$\left\{\begin{array}{c}2 x+4 y=1 \\ x-3 y=4\end{array}\right.$
(4) Solve: $\left\{\begin{array}{l}2 x^{2}+4 y=13 \\ x^{2}-y^{2}=\frac{7}{2}\end{array}\right.$
(5) Solve using any of the methods discussed in class.

$$
\left\{\begin{array}{l}
2 x-y+z=4 \\
x+3 y+2 z=-1 \\
7 x+5 z=11
\end{array}\right.
$$

(6) Find the partial fraction decomposition of $\frac{x^{2}-12 x+4}{x^{2}\left(x^{2}+4\right)} \quad$ (14 points)
(7) Use matrix methods (Gaussian elimination or Gauss Jordan) to solve: (14 points)

$$
\begin{gathered}
-x-2 y-z=-3 \\
2 x+y+z=16 \\
x+y+2 z=9
\end{gathered}
$$

You must obtain row echelon form or reduced row echelon form. Be sure to label operations performed at each step.

