Review Worksheet- Key Algebra from 7A necessary for Calculus See Assignment Sheet and review as needed.

Factoring with negative exponents and complex fractions:
(1) Factor:

Sample: $4 x^{\frac{-2}{3}}-8 x^{\frac{1}{3}}$
Homework
(a) $12 x^{\frac{-3}{4}}-8 x^{\frac{1}{4}}$
(b) $-\frac{1}{2}(3 x)\left(1-x^{2}\right)^{-\frac{3}{2}}(-2 x)+3\left(1-x^{2}\right)^{-\frac{1}{2}}$
(2) Simplify:

Sample: $\frac{2 \sqrt{1+x}-\frac{x}{\sqrt{1+x}}}{1+x}$

Homework

$$
\text { (a) } \frac{x^{-1}+y^{-2}}{x^{-2}-y^{-1}}
$$

(b) $\frac{x(8 x-1)\left(x^{2}+5\right)^{-\frac{1}{2}}-8\left(x^{2}+5\right)^{\frac{1}{2}}}{(8 x-1)^{2}}$
(3) Nonlinear Inequalities / Sign Charts

Sample: Solve $x^{2}-x<6$
Homework:
(a) Solve $\frac{x-2}{x^{2}-16} \geq 0$
(b) Find the domain $f(x)=\sqrt{3 x^{2}-6 x}$
(4) Graphing with Absolute Values and Piecewise defined functions. "Removing the bars" on absolute value functions.

Sample: (a) Graph $\mathrm{f}(\mathrm{x})=\frac{|x|}{x}$ by first writing it as a piecewise defined function without absolute value bars.
(b) Rewrite the function $f(x)=|1-4 x|$ as a piecewise function with no bars.

Homework

(a) Graph $\mathrm{f}(\mathrm{x})=x-|x|$ by first writing it as a piecewise defined function without absolute value bars.
(b) Rewrite the function $f(x)=|2 x+3|$ as a piecewise function with no bars.
(5) Graphing Rational Functions. Review Asymptotes, intercepts etc.

Homework

$$
\text { Graph } \mathrm{f}(\mathrm{x})=\frac{2 x^{2}+7 x-4}{x^{2}+x-2}
$$

(6) Modeling, applied problems, optimization

Homework The point P lies in the first quadrant on the graph of the line $y=4-2 x$.
From the point P, perpendiculars are drawn to both the x-axis and the y-axis. What is the largest possible area for the rectangle thus formed?

