Piecewise Defined Functions

A piecewise defined function is a function defined "in pieces" where the "piece" used is dependent on the input.
EX. Given the piecewise defined function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}2 x \text { if } x>3 \\ x^{2}-12 x \text { if } x \leq 3\end{array}\right.$, we can find
(a) $f(4)$: Since $4>3$, we use the branch $f(x)=2 x$ so $f(4)=8$.
(b) $f(0)$: Since $0<3$, we use $f(x)=x^{2}-12 x$ so $f(0)=0$.

You try: Find f(5) \qquad , $\mathrm{f}(-1)$ \qquad , f(3) \qquad
We graph a piecewise defined function as shown below. Remember that since it is a function, when you are finished your graph should satisfy the vertical line test.

EX: $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\sqrt{x} \text { if } x>1 \\ 3 x+1 \text { if }-2<x \leq 1 \\ 4 \text { if } x \leq-2\end{array}\right.$

You try: $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x^{2}-2 \text { if } x \geq 1 \\ |x| \text { if }-2<x<1 \\ -\frac{1}{2} x+1 \text { if } x \leq-2\end{array}\right.$

