(1) On the axes below, graph $y=x^{2}, y=x^{2}-4$, and $y=x^{2}+2$

GENERALIZATION: VERTICAL SHIFT - For $\mathrm{c}>0$, to graph
$f(x)+c$, shift the graph of $f(x)$ UP c units,
$f(x)-c$, shift the graph of $f(x)$ DOWN c units.
(2) On the axes below, graph $y=x^{2}, y=(x-2)^{2}$, and $y=(x+3)^{2}$.

GENERALIZATION: HORIZONTAL SHIFT - For $\mathrm{c}>0$, to graph
$f(x+c)$, shift the graph of $f(x)$ LEFT c units,
$f(x-c)$, shift the graph of $f(x)$ RIGHT c units.

Example: Combining horizontal and vertical shifts.

(3) Graph $y=\sqrt{x}, \quad y=-\sqrt{x}, y=\sqrt{-x}$

GENERALIZATION: REFLECTION -To graph
$-f(x)$, reflect the graph of $f(x)$ in the x axis,
$f(-x)$, reflect the graph of $f(x)$ in the y axis.
(4) Graph $y=x^{2}, y=3 x^{2}$,and $y=1 / 2 x^{2}$.

GENERALIZATION: VERTICAL STRETCH/SHRINK -
$\mathrm{cf}(\mathrm{x})$ where $\mathrm{c}>1$, vertically stretch the graph of $\mathrm{f}(\mathrm{x})$,
$\mathrm{cf}(\mathrm{x})$ where $0<\mathrm{c}<1$, vertically shrink or compress the graph of $\mathrm{f}(\mathrm{x})$.

Example:

