Be sure to show all work neatly and follow instructions carefully; no credit given if requested method is not used. Clearly mark all answers. Express answers as ordered pairs/triples where appropriate. NO GRAPHING CALCULATORS, SCRATCH PAPER, BOOKS, NOTES, ELECTRONIC DICTIONARIES ETC.
(1) Given the following matrices:

$$
A=\left[\begin{array}{cc}
3 & 1 \\
7 & -2
\end{array}\right] B=\left[\begin{array}{ccc}
3 & 1 & 2 \\
-1 & 1 & 5 \\
-4 & -3 & 3
\end{array}\right] C=\left[\begin{array}{cc}
4 & -6 \\
2 & 5
\end{array}\right] D=\left[\begin{array}{ccc}
-5 & 0 & -2 \\
3 & 1 & -7
\end{array}\right] E=\left[\begin{array}{cccc}
-1 & -2 & 0 & 4 \\
4 & 2 & 3 & 0 \\
7 & -1 & -1 & 1 \\
6 & 0 & 0 & 0
\end{array}\right]
$$

Find the following, if possible. (If not possible, say so.)
(a) DA
(b) $A+C$
(c) A C
(d) DB
(g) $\operatorname{det}(B)$
(h) $\operatorname{det}(E)$
(2) Use Cramer's Rule to solve the following system. $\left\{\begin{array}{l}3 x-3 y=5 \\ -x+5 y=7\end{array}\right.$
(3) Find the inverse of the matrix A.

$$
A=\left[\begin{array}{ccc}
1 & -2 & -4 \\
2 & -3 & -6 \\
-3 & 6 & 15
\end{array}\right]
$$

Use A^{-1} to solve the system $\left\{\begin{array}{l}x-2 y-4 z=2 \\ 2 x-3 y-6 z=0 \\ -3 x+6 y+15 z=1\end{array}\right.$
(4) Solve: $\left\{\begin{array}{l}x^{2}+2 y^{2}-7 y=0 \\ x^{2}+y^{2}=10\end{array}\right.$
(5) Solve using any of the methods discussed in class.

$$
\begin{aligned}
x+y-10 z & =-4 \\
-3 x-5 y+36 z & =10 \\
-x \quad+7 z & =5
\end{aligned}
$$

(6) Find the partial fraction decomposition of $\frac{2 x-4}{x(x-1)^{2}}$
(7) Use matrix methods (Gaussian elimination or Gauss Jordan) to solve:

$$
\begin{gathered}
3 x+2 y-5 z=1 \\
2 x-3 y-8 z=1 \\
x+5 y+2 z=1
\end{gathered}
$$

You must obtain row echelon form or reduced row echelon form. Be sure to label operations performed at each step.

Answers:

(1)
(a) not possible
(b) $\left[\begin{array}{cc}7 & -5 \\ 9 & 4\end{array}\right]$
(c) $\left[\begin{array}{ll}14 & -13 \\ 24 & -52\end{array}\right]$
(d) $\left[\begin{array}{ccc}-7 & 1 & -16 \\ 36 & 25 & -10\end{array}\right]$
(g) $51 \quad$ (h) $-6\left|\begin{array}{ccc}-2 & 0 & 4 \\ 2 & 3 & 0 \\ -1 & -1 & 1\end{array}\right|=12$
(2) $\mathrm{D}=12, \mathrm{Dx}=46, \mathrm{D} y=26=>\left(\frac{23}{6}, \frac{13}{6}\right)$
(3) $\quad A^{-1}=\left[\begin{array}{ccc}-3 & 2 & 0 \\ -4 & 1 & -\frac{2}{3} \\ 1 & 0 & \frac{1}{3}\end{array}\right], \quad \vec{x}=A^{-1} \vec{b}=\left[\begin{array}{c}-6 \\ -26 / 3 \\ 7 / 3\end{array}\right]$ so solution is $\left(-6,-\frac{26}{3}, \frac{7}{3}\right)$
(4) $(\pm \sqrt{6}, 2))$
(5) Dependent, answer not unique..($7 \mathrm{t}-5,3 \mathrm{t}+1$, t)
(6) $\frac{-4}{x}+\frac{4}{x-1}-\frac{2}{(x-1)^{2}}$
(7) $(-2,1,-1)$

