Solve: $\cos \theta=1 / 2$ for θ in $[0,2 \pi)$: \qquad

Now suppose we are asked to solve the equation $\cos \theta=1 / 3$ for θ in $[0,2 \pi)$. How many solutions do you expect this equation to have? \qquad

Since we don't know the value of θ exactly, we have to use the inverse cosine function. We can rewrite the equation $\cos \theta=1 / 3$ in the form $\theta=\cos ^{-1} 1 / 3$ to solve for θ EXACTLY. Here's the catch... How many solutions does $\theta=\cos ^{-1} 1 / 3$ have? \qquad

WHEN WE USE THE INVERSE TRIG. FUNCTIONS TO SOLVE FOR θ WE WILL GET ONLY ONE SOLUTION. IF THE ORIGINAL PROBLEM HAD MORE THAN ONE SOLUTION, WE NEED TO FIND THE OTHER SOLUTIONS...EXACTLY.

For this example, $\theta=\cos ^{-1} 1 / 3$ is the solution shown in the first Quadrant. We can think of this as a reference angle and use it to find the angle in the fourth quadrant $\theta=2 \pi-\cos ^{-1} 1 / 3$. These are the exact solutions.

Try solving the following for θ in $[0,2 \pi)$:

1) $\cos \theta=-3 / 4$
2) $\tan \theta=-3 \quad$ Be careful...are your answers really in [0. $2 \pi)$?
3) $\sin \theta=1 / 4$
4) $3 \sin ^{2} \theta+8 \sin \theta+4=0$
